15,489 research outputs found

    Effective potential for composite operators and for an auxiliary scalar field in a Nambu-Jona-Lasinio model

    Full text link
    We derive the effective potentials for composite operators in a Nambu-Jona-Lasinio (NJL) model at zero and finite temperature and show that in each case they are equivalent to the corresponding effective potentials based on an auxiliary scalar field. The both effective potentials could lead to the same possible spontaneous breaking and restoration of symmetries including chiral symmetry if the momentum cutoff in the loop integrals is large enough, and can be transformed to each other when the Schwinger-Dyson (SD) equation of the dynamical fermion mass from the fermion-antifermion vacuum (or thermal) condensates is used. The results also generally indicate that two effective potentials with the same single order parameter but rather different mathematical expressions can still be considered physically equivalent if the SD equation corresponding to the extreme value conditions of the two potentials have the same form.Comment: 7 pages, no figur

    An in-host model of HIV incorporating latent infection and viral mutation

    Full text link
    We construct a seven-component model of the in-host dynamics of the Human Immunodeficiency Virus Type-1 (i.e, HIV) that accounts for latent infection and the propensity of viral mutation. A dynamical analysis is conducted and a theorem is presented which characterizes the long time behavior of the model. Finally, we study the effects of an antiretroviral drug and treatment implications.Comment: 10 pages, 7 figures, Proceedings of AIMS Conference on Differential Equations and Dynamical Systems (2015

    Replica study of pinned bubble crystals

    Full text link
    In higher Landau levels (N>1N>1), the ground state of the two-dimensional electron gas in a strong perpendicular magnetic field evolves from a Wigner crystal for small filling ν\nu of the partially filled Landau level, into a succession of bubble states with increasing number of guiding centers per bubble as ν\nu increases, to a modulated stripe state near ν=0.5\nu =0.5. In this work, we compute the frequency-dependent longitudinal conductivity σxx(ω)% \sigma_{xx}(\omega) of the Wigner and bubble crystal states in the presence of disorder. We apply an elastic theory to the crystal states which is characterized by a shear and a bulk modulus. We obtain both moduli from the microscopic time-dependent Hartree-Fock approximation. We then use the replica and Gaussian variational methods to handle the effects of disorder. Within the semiclassical approximation we get the dynamical conductivity as well as the pinning frequency as functions of the Landau level filling factor and compare our results with recent microwave experiments.Comment: 19 pages and 6 eps figure

    cDNA Cloning of the Basement Membrane Chondroitin Sulfate Proteoglycan Core Protein, Bamacan: A Five Domain Structure Including Coiled-Coil Motifs

    Get PDF
    Basement membranes contain several proteoglycans, and those bearing heparan sulfate glycosaminoglycans such as perlecan and agrin usually predominate. Most mammalian basement membranes also contain chondroitin sulfate, and a core protein, bamacan, has been partially characterized. We have now obtained cDNA clones encoding the entire bamacan core protein of Mr = 138 kD, which reveal a five domain, head-rod-tail configuration. The head and tail are potentially globular, while the central large rod probably forms coiled-coil structures, with one large central and several very short interruptions. This molecular architecture is novel for an extracellular matrix molecule, but it resembles that of a group of intracellular proteins, including some proposed to stabilize the mitotic chromosome scaffold. We have previously proposed a similar stabilizing role for bamacan in the basement membrane matrix. The protein sequence has low overall homology, apart from very small NH2- and COOH-terminal motifs

    Energy Dependent Contrast in Atomic-Scale Spin-Polarized Scanning Tunneling Microscopy ofMn3N2(010): Experiment and First-Principles Theory

    Full text link
    The technique of spin-polarized scanning tunneling microscopy is investigated for its use in determining fine details of surface magnetic structure down to the atomic scale. As a model sample, the row-wise anti-ferromagnetic Mn3N2(010) surface is studied. It is shown that the magnetic contrast in atomic-scale images is a strong function of the bias voltage around the Fermi level. Inversion of the magnetic contrast is also demonstrated. The experimental SP-STM images and height profiles are compared with simulated SP-STM images and height profiles based on spin-polarized density functional theory. The success of different tip models in reproducing the non-magnetic and magnetic STM data is explored.Comment: 15 pages, 7 figure

    Unified First Law and Thermodynamics of Apparent Horizon in FRW Universe

    Full text link
    In this paper we revisit the relation between the Friedmann equations and the first law of thermodynamics. We find that the unified first law firstly proposed by Hayward to treat the "outer"trapping horizon of dynamical black hole can be used to the apparent horizon (a kind of "inner" trapping horizon in the context of the FRW cosmology) of the FRW universe. We discuss three kinds of gravity theorties: Einstein theory, Lovelock thoery and scalar-tensor theory. In Einstein theory, the first law of thermodynamics is always satisfied on the apparent horizon. In Lovelock theory, treating the higher derivative terms as an effective energy-momentum tensor, we find that this method can give the same entropy formula for the apparent horizon as that of black hole horizon. This implies that the Clausius relation holds for the Lovelock theory. In scalar-tensor gravity, we find, by using the same procedure, the Clausius relation no longer holds. This indicates that the apparent horizon of FRW universe in the scalar-tensor gravity corresponds to a system of non-equilibrium thermodynamics. We show this point by using the method developed recently by Eling {\it et al.} for dealing with the f(R)f(R) gravity.Comment: v2: revtex, 23 pages, references added, minor changes, to appear in PR
    corecore